UDDEHOLM SVERKER® 3

This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty of specific properties of the products described or a warranty for fitness for a particular purpose.

Classified according to EU Directive 1999/45/EC For further information see our "Material Safety Data Sheets".

Edition 5, 01.2011 The latest revised edition of this brochure is the English version, which is always published on our web site www.uddeholm.com

General

Uddeholm Sverker 3 is a high-carbon, highchromium tool steel alloyed with tungsten, characterized by:

- Highest wear resistance
- High compressive strength
- · High surface hardness after hardening
- Good through-hardening properties
- · Good stability in hardening
- Good resistance to tempering-back

Uddeholm Sverker 3 has gained widespread acceptance as a steel with exceptional wear resistance, suitable for long-life tooling with low repair and maintenance costs, for maximum production economy.

Typical analysis %	C 2.05	Si 0.3	Mn 0.8	Cr 12.7	W 1.1
Standard specification	AISI D6, (AISI D3), (WNr. 1.2436)				86)
Delivery condition	Soft annealed to approx. 240 HB			3	
Colour code	Red				

Applications

Blanking

Uddeholm Sverker 3 is recommended for applications demanding maximum wearresistance, such as blanking and shearing tools for thin, hard materials; long-run press tools; forming tools; moulds for ceramics and abrasive plastics.

-			
	Material thickness	Material ≤ 180 HRC	hardness > 180 HRC
Tools for:			
Blanking, punching,			
cropping, shearing,	_		
trimming, clipping	< 3	60–62	56–58
Short, cold shears for th knives for plastics waste	56–60		
Circular shears for light			
car-board etc.	58–60		
Clipping, trimming tools	58–60		
Wood milling cutters, re	amers, broach	es	56–58
			1

Forming

HRC
5662
58–62
58–62
58–62
56–60
58–62
58–62
56–60
56–60

Properties

Physical data

Hardened and tempered to 62 HRC. Data at ambient temperature and elevated temperatures.

Temperature	20°C (68°F)	200°C (390°F)	400° (750°F)
Density kg/m ³ lbs/in ³	7 700 0,277	7 650 0,276	7 600 0,275
Modulus of elasticity N/mm ² kp/mm ² tsi psi	194 000 19 800 12 565 28.1 × 10 ⁶	189 000 19 300 12 240 27.4 × 10 ⁶	173 000 17 600 12 040 25.1 × 10 ⁶
Coefficient of thermal expansion per °C from 20° per °F from 68°F		11.0 × 10 ⁻⁶ 6.1 × 10 ⁻⁶	10.8 x 10 ⁻⁶ 6.0 x 10 ⁻⁶
Thermal conductivity W/m °C Btu in/ft ² h °F	20,5 142	21,5 149	23,0 159
Specific heat J/kg °C Btu/lb °F	460 0.110		

Compressive strength

The figures are to be considered as approximate.

Hardness	Compressive strength R _{c0.2} MPa
62 HRC	2200
60 HRC	2100
55 HRC	1850
50 HRC	1600

Heat treatment

Soft annealing

Protect the steel and heat through to 850° C (1560°F). Then cool in the furnace at 10° C (20°F) per hour to 650° C (1200°F), then freely in air.

Stress relieving

After rough machining the tool should be heated through to 650° C (1200° F), holding time 2 hours. Cool slowly to 500° C (930° F), then freely in air.

Hardening

Preheating temperature: 600–700°C (1110– 1290°F)

Austenitizing temperature: 920–1000°C (1690– 1830°F) normally 940–980°C (1725–1800°F).

Tempe	erature	Soaking time*	Hardness before
°C	°F	minutes	tempering
920	1690	60	approx. 65 HRC
960	1760	30	approx. 66 HRC
1000	1830	15	approx. 66 HRC

*Soaking time = time at hardening temperature after the tool is fully heated through

Protect the part against decarburization and oxidation during hardening.

Quenching media

- Oil
- Vacuum (high speed gas)
- Forced air/gas
- Martempering bath or fluidized bed at 180–500°C (360–930°F), then cooling in air

Note: Temper the tool as soon as its temperature reaches $50-70^{\circ}C$ (120–160°F).

HARDNESS, GRAIN SIZE AND RETAINED AUSTENITE AS FUNCTIONS OF AUSTENITIZING TEMPERATURE

Tempering

Choose the tempering temperature according to the hardness required by reference to the tempering graph. Temper twice with intermediate cooling to room temperature. Lowest tempering temperature 180°C (360°F). Holding time at temperature minimum 2 hours.

TEMPERING GRAPH

Dimensional changes during hardening

Sample plate, 100 x 100 x 25 mm, 4" x 4" x 1".

	Width %	Length %	Thickness %
Oil hardening from 960°C (1760°F) min. max.	0.05 0.08	+0.07 +0.09	0.08
Martempering from 960°C (1760°F) min. max.	0.01 0.03	+0.07 +0.09	 0.16
Air hardening from 960°C (1760°F) min. max.	+0.05 +0.06	+0.09 +0.13	+0.05

Dimensional changes

Note: The dimensional changes on hardening and tempering should be added together.

Sub-zero treatment

Pieces requiring maximum dimensional stability should be sub-zero treated, as volume changes may occur in the course of time. This applies, for example, to measuring tools like gauges and certain structural components.

Immediately after quenching the piece should be sub-zero treated to between -70 and -80°C (-95 to -110°F)—soaking time 3–4 hours—followed by tempering. Sub-zero treatment will give a hardness increase of 1–3 HRC. Avoid intricate shapes as there will be risk of cracking.

Aging occurs at 110–140°C during 25–100 h.

Nitriding

Nitriding will give a hard diffused surface layer which is very resistant to wear and erosion, and also increases corrosion resistance. Nitriding in ammonia gas at a temperature of 525°C (975°F) gives a surface hardness of approx. 1150 HV₁.

Nitriding to °C	emperature °F	Nitriding time hours	Depth app mm	of case prox. inch
525	980	20	0.20	0.008
525	980	30	0.25	0.010
525	980	60	0.30	0.012

Two hours nitrocarburizing at 570°C (1060°F) gives a surface hardness of approx. 800 HV_1 . The case- depth having this hardness will be 10–20 μ m (0.0004"–0.0008"). The figures refers to hardened and tempered material.

Uddeholm Sverker 3 blanking and piercing tool to produce lamination plates from abrasive high-silicon sheet.

Machining recommendation

The cutting data below are to be considered as guiding values which must be adapted to existing local conditions. More detailed information can be found in Uddeholm "Cutting Data Recommendations".

Turning

Cutting data	Turning with carbide		Turning with high speed steel
parameters	Rough turning	Fine turning	Fine turning
Cutting speed (v _c) m/min.	70–100	100-150	8–12 26_40
1.p.m.	230-330	330-300	20-40
Feed (f) mm/r i.p.r.	0.3–0.6 0.012–0.023	-0.3 -0.012	-0.3 -0.012
Depth of cut (a _p) mm inch	2–6 0.08–0.16	0.5–2 0.02–0.08	0.5–3 0.02–0.12
Carbide desig- nation ISO	K20, P10–P20 Coated carbide*	K15, P10 Coated carbide*	-

 $^{\ast}\text{Use}$ a wear resistant $\text{Al}_{2}\text{O}_{3}$ coated carbide grade

Drilling

HIGH SPEED STEEL TWIST DRILLS

Drill	Drill diameter Ø		Cutting speed (v _c)		ed (f)
mm	inch	m/min.	f.p.m.	mm/r	i.p.r.
-5 5-10	-3/16 3/16-3/8	10–12* 10–12*	30-40* 30-40*	0.05-0.10	0.002-0.004
10–15 15–20	3/8–5/8 5/8–3 4	10–12* 10–12*	30-40* 30-40*	0.20-0.25	0.008-0.010

CARBIDE DRILLS

	Type of drill			
Cutting data parameters	Indexable insert	Solid carbide	Carbide tip ¹⁾	
Cutting speed (v _c) m/min. f.p.m.	100–130 330–430	50–70 165–230	30–40 100–130	
Feed (f) mm/r i.p.r.	0.05–0.25 ²⁾ 0.002–0.010 ²⁾	0.10-0.25 ²⁾ 0.004-0.010 ²⁾	0.15–0.25 ²⁾ 0.006–0.010 ²⁾	

 $^{^{1)}}$ Drill with replaceable or brazed carbide tip $% \left({\left({{{\mathbf{x}}_{i}} \right)_{i}} \right)$

²⁾ Depending on drill diameter

Milling

FACE AND SQUARE SHOULDER FACE MILLING

	Milling with carbide		
Cutting data parameters	Rough milling	Fine milling	
Cutting speed (v _c) m/min. f.p.m.	90–110 300–360	110–140 360–460	
Feed (f _z) mm/tooth inch/tooth	0.2–0.4 0.008–0.016	0.1–0.2 0.004–0.008	
Depth of cut (a _p) mm inch	2–4 0.08–0.16	-2 -0.08	
Carbide designation ISO	K20, P10–20 Coated carbide*	K15, P10 Coated carbide*	

*Use a wear resistant Al₂O₃ coated carbide grade

END MILLING

	Type of milling				
Cutting data parameters	Solid carbide	Carbide indexable insert	High speed steel		
Cutting speed (v _c) m/min. f.p.m.	30–70 100–230	40–80 130–260	10–15 ¹⁾ 33–50 ¹⁾		
Feed (f _z) mm/tooth inch/tooth	0.03–0.2 ²⁾ 0.001–0.008 ²⁾	0.08–0.2 ²⁾ 0.003–0.008 ²⁾	0.05–0.35 ²⁾ 0.002–0.014 ²⁾		
Carbide designation ISO	_	K15, P10–P20 ³⁾ Coated carbide	_		

¹⁾ For coated HSS end mill $v_c = 20-25$ m/min. (65-80 f.p.m.)

²⁾ Depending on radial depth of cut and cutter diameter

 $^{3)}$ Use a wear resistant ${\rm Al_2O_3}$ coated carbide grade

Grinding

General grinding wheel recommendation is given below. More information can be found in the Uddeholm publication "Grinding of Tool Steel".

	Wheel recommendation		
Type of grinding	Soft annealed condition	Hardened condition	
Face grinding straight wheel	A 46 HV	B107 R75 B3 ¹⁾ A 46 HV	
Face grinding segment	A 24 GV	3SG 46 FVSPF ¹⁾ A 36 FV	
Cylindrical grinding	A 46 KV	B126 R75 B3 ¹⁾ A 60 KV	
Internal grinding	A 46 JV	B107 R75 B3 ¹⁾ A 60 IV	
Profile grinding	A 100 LV	B107 R100 V ¹⁾ A 100 JV	

 $^{1)}\ensuremath{\mathsf{The}}$ first choice is a CBN grinding wheel for this operation

Welding

Good results when welding tool steel can be achieved if proper precautions are taken during welding (elevated working temperature, joint preparation, choice of consumables and welding procedure). If the tool is to be polished or photo-etched, it is necessary to work with an electrode type of matching composition.

Welding method	Working temperature	Consumables	Hardness after welding		
MMA (SMAVV)	200–250°C	Inconel 625-type UTP 67S Castolin EutecTrode 2 Castolin EutecTrode 6	280 HB 55–58 HRC 56–60 HRC 59–61 HRC		
TIG	200–250°C	Inconel 625-type UTPA 73G2 UTPA 67S UTPA 696 CastoTig 45303W	280 HB 53–56 HRC 55–58 HRC 60–64 HRC 60–64 HRC		

Electrical-discharge machining

If spark-erosion, EDM, is performed in the hardened and tempered condition, the tool should then be given an additional temper at approx. $25^{\circ}C$ ($50^{\circ}F$) below the previous tempering temperature.

Further information can be obtained from the Uddeholm brochure "EDM of Tool Steel".

Further information

Contact your local Uddeholm office for further information on the selection, heat treatment, application and availability of Uddeholm tool steel, including the publication "Uddeholm Steel for Cold Work Tooling".

Relative comparison of Uddeholm cold work tool steel

Material properties and resistance to failure mechanisms

	Hardness/				Resistance to		Fatigue cracking resistance	
Uddeholm grade	Resistance to plastic deformation	Machin- ability	Grind- ability	Dimension stability	Abrasive wear	Adhesive wear	Ductility/ resistance to chipping	Toughness/ gross cracking
ARNE								
CALMAX								
CALDIE (ESR)								
RIGOR								
SLEIPNER								
SVERKER 21								
SVERKER 3								
VANADIS 4 EXTRA								
VANADIS 6								
VANADIS 10								
VANADIS 23								
VANCRON 40								

The Conventional Tool Steel Process

The starting material for our tool steel is carefully selected from high quality recyclable steel. Together with ferroalloys and slag formers, the recyclable steel is melted in an electric arc furnace. The molten steel is then tapped into a ladle.

The de-slagging unit removes oxygen-rich slag and after the deoxidation, alloying and heating of the steel bath are carried out in the ladle furnace. Vacuum degassing removes elements such as hydrogen, nitrogen and sulphur.

In uphill casting the prepared moulds are filled with a controlled flow of molten steel from the ladle. From this, the steel goes directly to our rolling mill or to the forging press to be formed into round or flat bars.

HEAT TREATMENT

Prior to delivery all of the different bar materials are subjected to a heat treatment operation, either as soft annealing or hardening and tempering. These operations provide the steel with the right balance between hardness and toughness.

MACHINING

Before the material is finished and put into stock, we also rough machine the bar profiles to required size and exact tolerances. In the lathe machining of large dimensions, the steel bar rotates against a stationary cutting tool. In peeling of smaller dimensions, the cutting tools revolve around the bar.

To safeguard our quality and guarantee the integrity of the tool steel we perform both surface- and ultrasonic inspections on all bars. We then remove the bar ends and any defects found during the inspection.

Network of excellence

UDDEHOLM is present on every continent. This ensures you high-quality Swedish tool steel and local support wherever you are. ASSAB is our wholly-owned subsidiary and exclusive sales channel, representing Uddeholm in various parts of the world. Together we secure our position as the world's leading supplier of tooling materials.

UDDEHOLM is the world's leading supplier of tooling materials. This is a position we have reached by improving our customers' everyday business. Long tradition combined with research and product development equips Uddeholm to solve any tooling problem that may arise. It is a challenging process, but the goal is clear – to be your number one partner and tool steel provider.

Our presence on every continent guarantees you the same high quality wherever you are. ASSAB is our wholly-owned subsidiary and exclusive sales channel, representing Uddeholm in various parts of the world. Together we secure our position as the world's leading supplier of tooling materials. We act worldwide, so there is always an Uddeholm or ASSAB representative close at hand to give local advice and support. For us it is all a matter of trust – in long-term partnerships as well as in developing new products. Trust is something you earn, every day.

For more information, please visit www.uddeholm.com, www.assab.com or your local website.

Assab 🚣

PROBLEMS AUTOHOTIVE